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Abstract1 ,2—A miniature four-point probe instrument has 
been developed and applied to the characterization of the 
moisture content of the Martian soil simulants using fine 
and coarse silica sand and Moses Lake basalt. The results 
indicate that the soil resistivity varies over four orders of 
magnitude as the moisture content varied from 0.1% to over 
10%. In addition it was found that forcing too much current 
through the sand sample resulted in a curious breakdown in 
the current-voltage characteristic. 
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1 INTRODUCTION 

The moisture content of Martian soils was estimated by the 
Mars Odyssey, remote sensing Gamma Ray Spectrometer 
(GRS) to be between 0.25% for the driest part of Mars to 35 
± 15% [1]. This instrument is composed of a GRS and 
neutron spectrometer. The detection of water is inferred 
from the hydrogen signal which appears as a 2.2 MeV 
gamma ray. As this signal increases there is accompanying 
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decrease in the neutron flux which is absorbed by the 
hydrogen atoms [2]. 
 
The upper limit of 35% is considered to be too large for it is 
greater than the amount that can be accommodated by 
alteration of most rock-forming minerals [1] and is typical 
of water-saturated terrestrial soils. Thus, there is a need to 
develop instrumentation for direct in situ measurement of 
water in Martian regolith. For this reason, we are in the 
process of developing such instrumentation. Our goal is to 
demonstrate the detection of water at less than 1% by 
weight in simulated Martian regoliths. This paper describes 
the measurements conducted thus far and suggests 
extensions of this work to practical instruments that can be 
used in the field and on the surface of Mars. 

2 APPARATUS 

The apparatus used in this effort is described in the next few 
figures. In order to obtain results quickly, we used the E-
Tongue 3 apparatus shown in Fig. 1. It was originally 
designed as an instrument to monitor water quality and 
biofilm reactions [3]. The sample chamber was re-designed 
to accommodate the introduction of soil samples into the 
chamber as seen in Fig. 1a. 
 

 
Figure 1a. E-Tongue 3 apparatus showing the new soil 
sample chamber with sensors at the bottom of the chamber. 
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The sample chamber was fabricated from polycarbonate. It 
has a 1.2-inch diameter and 0.8-inch depth. As in the 
original E-Tongue design, the chamber is attached to a 
ceramic substrate using a dual O-ring seal. The substrates 
are shown in Fig. 2 and fabricated using hybrid 
microelectronic fabrication methods where each layer is 
screen printed onto the ceramic substrate and fired in an air 
atmosphere at 850°C. The substrate is 1.5-mm thick and is 
96% alumina. Electrical contact to the sensors is achieved 
by using 0.25-mm vias created using laser drilling. The vias 
are made conducting by screen printing a metal layer that is 
drawn through the vias using a mild vacuum. The vias are 
connected to wires screen printed on the underside of the 
substrate and connected to electrical contacts. The bottom 
wires are protected by a dielectric layer.  
 

 
Figure 1b. Electronics board (14.3 cm x 21.7 cm) beneath 
the top plate showing the flex cables used to connect the 
electronics to the sensors. 
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Figure 2.  Ceramic substrate with REDOX and conductivity 
sensors on top and heater and thermometer on bottom.  The 
long dimension is 6.1 cm. 
 
As seen in Fig. 2, the substrate consists of nine REDOX 
cells and one conductivity sensor. In the experiments 

described here, the REDOX cells were biased in an OFF 
state where no current was allowed to flow either to or from 
these cells. This was achieved by configuring the REDOX 
cells in a galvanostat mode and forcing zero current. All 
electrodes were formed using screen printed gold.  
 
A photomicrograph of the conductivity sensor with gold 
electrodes is shown in Fig. 3. The probe spacing, s, is 1.25 
mm and the diameter, d, of the probes is 0.75 mm. The 
0.25-mm diameter laser drilled hole in the ceramic is clearly 
visible as a dimple in the center of each probe. Each of the 
probes is given a G-label which corresponds to the labels for 
the conductivity cell seen in Fig. 4.  

2.1 Conductivity Circuitry 

The circuitry used to measure the conductivity is shown in 
Fig. 4. This circuitry is designed as a galvanostat where 
current is forced through the sensor between two sets of 
probes (G1 and G4) and the voltage measured between the 
other two probes (G2 and G3). The conductivity sensor is 
represented by three resistors shown in the Fig. 4; that is 
R12, R23, and R34. 
 

S 

d 
G1 G2 

G3 G4 

 
Figure 3. Photomicrograph of gold conductivity sensors’ 
square-array four disc probe where the probe spacing is s = 
1.25 mm and disc probe diameter is d = 0.75 mm. 
 
Current is forced through the sensor by programming the 
DAC (digital-to-analog converter) seen in the Fig. 4. Thus, 
current passes through resistor, R01, and then through the 
conductivity sensor. The sample voltage, V01, is detected by 
the instrumentation amplifier IA1. The current through the 
conductivity sensor is given by: 
 

 I01 = V01/R01 (1) 
 
where R01 = 100 kohm. For I01 in µA and V01 in V the 
operating equation is: 
 

 I01(µA) = 10 · V01(V) (2) 
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The voltage across the sensor, V23, is measured by 
instrumentation amplifier, IA2. The resistance of the 
conductivity sensor is given as: 
 

 R23 = (V23/V01) · R01 (3) 
 
This type of circuit is ratiometric for the measured 
resistance is a fraction of the resistor R01. Strictly speaking, 
the determination of the resistance does not require the 
direct measurement of the current.  Thus, the accuracy 
depends on the ratio of the voltages which are measured by 
a multiplex ADC using the same reference voltage and the 
accuracy of R01 which is 1%. 
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Figure 4. Electronic circuit used to measure soil 
conductivity. The G-points identify critical nodes in the 
circuit. 
 
The relationship between the measured resistance, R23, and 
the sample resistivity, ρ∞, for a semi-infinitively thick 
sample with a square-array four-point probe, where the 
probes are far from the edge of the sample, is [4]: 
 

 ( ) 23p
23 RsG

22
Rs2πρ ⋅⋅=

−
⋅⋅=∞  (4) 

 
where Gp is the geometrical factor for the point probes and s 
is the probe spacing. For the infinitely thick square-array 
four-point probe, Gp = 10.726.  
 
A semi-infinitely thick sample is defined as a sample with a 
thickness that causes less than a 1% change in Gp. The semi-
infinitely thick sample case is satisfied for the square-array 
four point probe when the sample thickness, t, is more than 
four times the probe spacing [4]. That is t∞ > 4 · s. For s = 
1.25 mm, the infinitely thick case is determined for t∞ > 5 
mm. For the sample chamber described above, this can be 
accommodated by a 10 g sand sample. 
 
The geometrical factor for the disc probes shown in Fig. 3 
was determined by measuring the resistivity of various HCl  

solutions [5]. The methodology is described in the 
Appendix. The analysis for the E-Tongue 3 chamber leads 
to a value for the geometrical factor for the disc probes of 
Gd = 24.9. Thus, the resistivity of the semi-infinitely-thick, 
square-array four-disc probe with 1.25 mm disc-probe 
spacing is:  
 

ρ∞( Ω · cm) = Gd ·s(cm) ·R23(Ω) = 3.11 · R23(Ω) (5) 
 
This relationship was used to convert the measured 
resistance, R23, of the sand samples to resistivity. 

2.2 Conductivity Waveform 

Since conductivity can not be measured using direct current 
[3] because the electrodes would polarize due to the 
conducting ions in solution.  The E-Tongue 3 waveform is 
shown in Fig. 5a. This wave was adjusted as seen in Fig. 5b 
to form a triangle wave current. 
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Figure 5a. E-Tongue 3 waveform where the bounds are E1 
and E2 and the slope is S. 
 
The E-Tongue 3 apparatus is capable of producing the 
waveform shown in Fig.5a. This waveform was adapted for 
use with the conductivity sensor and the modified waveform 
is shown in Fig. 5b. Comparing this waveform with that 
shown in Fig. 5a, indicates that Tbeg, Tstrp-beg, Tdep, Tstrp-end, 
Tend were set to 0.  
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Figure 5b. Conductivity sensor waveform where V01 (blue 
triangles) is the forced voltage and V23 (red squares) is the 
measured voltage. 
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The frequency of the waves used in this study is in the milli-
Hertz range. The waveform shown in Fig. 5b is 40 mHz. 

2.3 Measurement Domain 

The measurement of conductivity is constrained by 
equipment limitations. The measurement domain is 
described in Fig. 6. In this figure, the voltage V23 is plotted 
for R23 values with Econ as a parameter. The measurement 
domain for the conductivity sensor is shown as the red 
dashed area in Fig. 6. The measurement range for this 
instrument is limited to resistance values that vary from 200 
ohms to 50 M ohms. 
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Figure 6. Conductivity sensor measurement domain (red 
dashed area) for R01 = 100k ohm. 
 
The measurement domain results from circuit choices 
including the R01 value (100 kohm) and the resolution of the 
ADC (analog-to-digital converter) and DAC (digital-to-
analog converter). The ADC has a 12-bit resolution and ± 
4.096 V range and DAC has a 16-bit resolution and ± 4.096 
V range. The ADC’s detection resolution is 2 mV/bit. This 
sets the lower limit for V23 at 5 mV. The upper bound for 
V23 is determined by 5 V output capability of the 
operational amplifier which is V0 = 5V. This results in the 
following relationship: 
 

 
)/RR3(1

V
R
R V

0123

0

01

23
23 ⋅+

=  (6a) 

 
where we have assumed that R12 = R23 = R34. The current 
through the sample is given by I01 = V01/R01. For V01 = Econ. 
The governing equation for the curves in Fig.6 is: 
 

 V23 = (Econ/R01) · R23 (6b) 
 
As seen in the figure, Econ values vary from 5 mV to 2 V. 
Thus setting Econ determines the range over which sample 
resistances can be measured. As seen in the figure, the range 
for sample resistance varies from 200 ohms to 50 M ohms. 
 

Other factors, that influence the accuracy of the 
measurements, include over sampling of each measured 
point and the least squares fitting of many current-voltage 
points. Depending on the number of additional points, 
measurements are possible below the bottom of the red-
dashed area shown in Fig. 6. 
 
To determine the proper operating conditions, current-
voltage data was acquired and its correlation coefficient 
determined. Data with a correlation coefficient equal to or 
greater than 0.9 were deemed satisfactory. The details are 
given in the next section. 

3 EXPERIMENTAL PROCEDURES 

This section presents the experimental results for two types 
of sand samples. First the waveforms are described then the 
experimental results are presented. 

3.1 Waveforms 

Typical waveform used in these experiments is shown in 
Fig. 7. During the positive going ramp, 200 data points were 
acquired and during the negative going ramp an additional 
200 points were acquired. Fig. 7a shows the time evolution 
of the current and voltage signals and Fig. 7b shows the 
current voltage characteristic. The digitization 
characteristics of the ADC is clearly evident in these figures 
as the stair-step pattern.  
 
The sample, used in acquiring the data shown in Fig. 7, was 
fine silica sand with 0.2% by weight of water with 100 mM 
of KCL. The measured resistance was 273.9 kohms where 
the Econ = 10 mV.  
 
For this value of Econ the maximum current through the 
sample is ±100 nA (see Eq. 2). Notice that this current is not 
symmetrical with respect to zero current. This is typical for 
electrical chemical cells where offset voltages are present. 
The resistance of the sample was determined from a least 
squares fit to the 400 data points seen in Fig. 7b. 
 
In developing the methodology for these measurements, the 
choice of Econ is critical. As discussed above, the value for 
Econ must be such that the experimental data falls within the 
red dashed area seen in Fig. 6.  
 
In addition, to this equipment limit, soil samples were found 
to exhibit a breakdown characteristic especially at low 
moisture content or at low temperatures. A typical response 
is seen in Fig. 8. Here it is seen that as higher currents are 
forced through the sample, the voltage and current change 
abruptly. From a circuit stand point, the sand samples no 
longer exhibit linear current-voltage characteristics. Our 
thoughts on the physical nature, of this very interesting 
phenomena, are presented in the Discussion Section. 
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Figure 7a. Time dependent current-voltage characteristics. 
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Figure 7b. Current versus voltage with linear characteristics 
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Figure 8a. Time dependent current-voltage characteristics 
showing breakdown phenomena. 
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Figure 8b. Current-voltage characteristic showing 
breakdown phenomena. 
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3.2 Correlation Coefficient Analysis 

In order to facilitate data acquisition, software was 
developed to allow the acquisition of current-voltage curves 
at different values of Econ; hence, different values of 
maximum current. The procedure is illustrated in Fig. 9 
which shows that Econ is stepped through eight values from 
2 mV to 32 mV.  
 
As mentioned, the resistance was derived by fitting the 
current-voltage characteristics and the associated correlation 
coefficient, CC, was determined. This procedure allowed a 
quick identification of measurements that were having 
problems due either to equipment limitations (red dashed 
bound line in Fig. 6) or sample breakdown. 
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Figure 9. Finding acceptable R23 values depends on finding 
Econ values with CC (correlation coefficients) above 0.9. 

3.3 Graphical User Interface 

A graphical user interface (GUI), seen in Fig. 10, was 
developed to allow users to specify the type and parameters 
for measuring the conductivity sensor. The Type of 
Experiment is selected through the combo box interface 
showing Conductivity. The experiment parameters are 
defined in the Setup window including the voltage limits (E1 
and E2), scan rate (S), deposition time (Tdep = 0), number 
of samples/slope (Np) and average (Na = 200) 
points/sample. The interface also specifies that the REDOX 
cells are biased in Galvanostat mode allowing no current to 
flow from these cells.  The ADC Prog. window is used to 
put those cells in a neutral (zero current) electrochemical 
state. The DAC Prog. window is used to selected the cells to 

receive the DAC ramp signal. The Switch Prog. window is 
used to select potentiostat or galvanostat mode.  
 
Once the experiment is started, the GUI shows the Status of 
the experiment and the execution time. This information is 
important since some experiments can take several hours. 
GUI also allows the user to perform eight experiments 
automatically each with a different Econ. The number of 
experiments and Econ parameters for each experiment are 
defined in the Exp. Series: Tdep window. The interface also 
allows the user to monitor results through the Results 
window while the experiments are running.  
 

 
Figure 10. Conductivity GUI. 

 

3.4 Electrode Cleaning Procedure 

Before measuring contaminated water, the electrodes are 
cleaned. During the past six months a number of cleaning 
procedures were tried. Our latest procedure is as follows. 
First the raw ceramic substrate is lightly lapped with 2000 
grit silicon carbide paper to remove any hillocks remaining 
after the electrode screen printing process. After an ASV 
measurement sequence, residual metals are removed from 
the electrodes using a finishing pad available from 3M (Part 
7414). Residue from this process is removed using a cotton 
swab soaked in a flux remover available from M. G. 
Chemicals Part 414. The ceramic is given a final cleaning 
using a cotton swab soaked in IPA (IsoPropyl Alcohol). The 
residual IPA is removed using a dry cotton swab. If sterility 
is needed, the ceramic substrate, polycarbonate chamber and 
O-ring can be autoclaved. 

4 EXPERIMENTAL RESULTS 

A number of sand samples were used in the following 
experiments. They were first characterized and then 
measured in the E-Tongue-3 apparatus with the soil 
chamber shown in Fig. 1a. 

4.1 Sand Sizing 

The sands were characterized using photomicroscopy and 
analyzed using a software program which characterized the 
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size the particles. The results in Fig. 11a are for fine silica 
sand, the results in Fig. 11b are for coarse silica sand, and 
the results Fig. 11c are for Moses Lake basalt. The 
photomicroscope image software revealed the angularity 
and mean dimension for the particles.  As seen from Figure 
11, the particles were in the 100 to 200 µm range. 
 

 
Figure 11a. Fine Silica Sand Mean d: 107 µm 

 

 
Figure 11b. Coarse Silica Sand Mean d: 208 µm 

 

 
Figure 11c. Basalt Mean d: 152 µm 

4.2 Sand Resistivity 

The data shown in the following figures were obtained by 
first weighing 10.0 g of sand. Then a fraction of pure water 
doped with 100 mM KCl was introduced into the sand using 
a pipette with 0.1 mL resolution. The sand and water were 
mixed by shaking until the sample was uniform. Then the 

mixture was introduced into the sample chamber shown in 
Fig. 1a. The mixture was pressed into place using a cylinder 
that was rotated so as to compact the sample as much as 
possible thus removing residual air. The cylinder was left in 
place during the experiment in an attempt to seal the sample 
to minimize moisture evaporation during the data 
acquisition period. 
 
Results for coarse silica sand and basalt sand are shown in 
Fig. 12. The data show that measurements were acquired 
over the moisture range from 0.1% to 15% by weight. 
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Figure  12. Resistivity of two types of moist sand measured 
at room temperature. 
 
The data in Fig. 12 were fitted to the following equation 
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where M is the mass ratio representing mass ratio values 
given on the horizontal axis of Fig. 12. The coefficients of 
Eq. 7 are a0, a1, and a2. A fit by eye to the data in Fig. 12 
yields the parameters listed in Table 1. 
 

Table 1. Fitting Parameters for Eq. 7 
 Coarse Silica Sand Basalt Sand 

log M0 -1.9 -1.9 
a0 -1.5 -1.5 
a1 0 -7.0 
a2 0 +10 

log ρ0 +5.6 +4.9 
 
Coarse silica sand dependence as seen in Fig. 12 is similar 
to that observed by Archie [6]. Archie’s law relates the 
resistivity of moist sand to porosity expressed as a fraction 
for unit volume rock. The data in Fig. 12 was acquired as a 
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mass fraction of water to sand. Despite this difference, 
values for a0 from the literature [7] range from -1.37 to -
1.95. These values are comparable with a0 = -1.5 found in 
these studies.  
 
The basalt sand dependence in Fig. 12 shows a transition 
from wet behavior at high water content to dry behavior at 
low water content. The slope of the curves is the same for 
both basalt sand and coarse silica sand. 
 
The same procedure used to prepare the samples at room 
temperature was used to measure samples as a function of 
temperature. The results are shown in Fig. 13 for the coarse 
silica sand sample. In addition to the sand measurements, 
water measurements were also acquired. At each 
temperature the system was allowed to equilibrate for 15 
minutes before taking data. At temperature below 0 °C the 
breakdown phenomena shown in Fig. 8 was also observed. 
For these cases, Econ values were reduced to avoid the 
breakdown phenomena.  
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Figure 13. Temperature dependence of course silica sand 
with 1% H2O and doped with 100mM HCl and pure water. 
 
These results in Fig. 13 show an increase in the resistivity of 
the mixture as the temperature is decreased below 0 °C. The 
resistivity behavior of the water and sand with temperature 
are similar to those noted by Scott [8]. They too observed a 
large increase in resistivity with decreasing temperature. 
Also they observed an increase in resistivity at temperatures 
a few degrees less than 0 °C. 

5 DATA ANALYSIS 

The conduction of electricity in moist soils has been 
described by Rhoades [9]. He indicated that conduction 
occurs by several mechanisms. The soil conduction paths 
are depicted in Fig. 14 where the numbered paths 
correspond to the follow mechanisms: 

 (1) Particle conduction: Consists of conduction through 
certain conducting minerals [7]. 
 (2) Electrolyte (solution) conduction: Consists of 
conduction through the water electrolyte which depends on 
the concentration and mobility of cations and anions in 
solution [10]. 
 (3) Mixed conduction: Consists of conduction through 
conducting minerals and through the electrolyte.  
 (4) Surface conduction: Consists of conduction through 
water adsorbed on particle surfaces.  
 
 

 

(1) 

DISSOLVED
GAS
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(2) 

(3) 

BOUND WATER 

(4) 
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Figure 14. Model of conduction paths in moist soils. 
 
This model is used to explain the observations in Fig. 12. 
First, the particles used in this study are insulators that 
eliminate paths #1 and #3 from consideration. For high 
water content, path #2 is a viable explanation; this path has 
a low resistance to flow of current through the electrolyte. 
For low water content, path #4 is viable for this path will 
have a high resistance to the flow of current. For the basalt 
sand, there is a clear transition from one conduction mode to 
the other but for the coarse silica sand there appears to be no 
transition between conduction modes. The breakdown 
phenomena observed in Fig. 8 appears to be due to a rupture 
of the current path. Reasons for the transition behavior for 
the basalt and the breakdown phenomena are being sought. 
 
The authors could not fine a model for the behavior of soils 
at temperature below 0 °C. This appears to be a frutfull area 
for research.  

6 CONCLUSION 

Results presented here shown that electrical conductivity 
techniques are viable in characterizing soils with as little as 
0.1% water. Such a low percentage of water is less than the 
projections for the driest soils on Mars. The technique can 
be used when the temperature drops below 0 °C.  In this 
study measurements were used to characterize soils at 
temperature as low as -20 0 °C.  The results for soils 
measured at room temperature are consistent with Archie’s 
Law in that the slope of the log resistivity versus log soil 
moisture percentage has a slope of -1.5. 

7 APPENDIX: Conductivity Sensor 
Calibration 

The geometrical factor was determined for the conductivity 
sensor shown in Fig. 3 where the electrodes are discs not 
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points. The disc geometrical factor, Gd, was determined 
using solutions of HCl where the ionic conductivity is well 
known.  
 
The resistance values, R23, shown in Fig. A1, were 
measured using various HCl solutions. These measurements 
were acquired where the sample thickness is large compared 
to the probe spacing so the sample is considered to be 
infinitely thick. Recall that the probe spacing for the 
conductivity sensor is s = 0.125 cm. 
 
A simple model was developed to fit the results seen in Fig. 
A1. The model consists of two parallel resistors one resistor 
represents the undoped water resistance, R0, and the other 
resistor represents the electrolyte resistance, Re. The total 
resistance is the parallel combination of R0 and Re: 
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Figure A1. Conductivity sensor HCl response. 

 
The resistance of the electrolyte is given by: 
 

 Re = ρe/( Gd · s) (A2) 
 
and the resistivity of the electrolyte is [10]: 
 

 ρe = 1000/(λ · C) (A3) 
 
where λ is the electrolyte ionic conductivity with units of 
cm2/(Ω · mol), and C is concentration of ions in solution 
with units of mol/L or M. The conversion factor 1000 has 
units of cm3/L. The combination of the above two equations 
yields a second equation for the electrolyte resistance: 
 

 Re = 1000/(Gd · s · λ · C) (A4) 
 
Combining this equation with Eq. A1 yields: 
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This    equation was used to fit the data shown in Fig. A1. 
The fitting equation was obtained by rearranging the above 
equation to form the following linear equation: 
 

 R23 =  [R0] + [−Κ1] · R23 · C (A6) 
 
where the coefficient: 
 

 K1 = (R0 · Gd · s · λ)/1000 (A7) 
 
The result of a least squares fit to the data shown in Fig. A1 
is R0 = 104.6 kΩ and K1 = 136,780 (L/mol). The disc 
geometrical factor, Gd, is calculated from Eq. A6 as: 
 

 Gd = K1 · 1000/( R0 · s · λ) (A8) 
 
where the conductivity of HCl for infinite dilution is 
λ = 425.96 cm2/(Ω · mol) [11]. Introducing appropriate 
values for the parameters in Eq. A8 leads to the value for the 
disc geometrical factor, Gd = 24.9 which is unitless. This 
value is used to calculate the resistivity of the data shown in 
Figs. 12 and 13: 
 

ρ∞( Ω · cm) = Gd ·s(cm) ·R23(Ω) = 3.11 · R23(Ω) (A9) 
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